
A strong nominal semantics for fixed-point
constraints

Ali Khan Caires Santos1 Maribel Fernández2 Daniele Nantes1,3

1UnB (University of Brasília), 2King’s College London, 3Imperial College London

MFPS 2024

What are fixed-point constraints?

Nominal Syntax

The set of nominal terms T(Σ,A,V) are defined inductively by the following
grammar:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

where

• a range over an infinite countable set of atoms A (object-level);

• X range over an infinite countable set of variables V (meta-level);
• π · X are called suspensions. Id · X is represented by X;
• π range over finite permutations on A, i.e. bijections A → A with
dom(π) := {a ∈ A | π(a) 6= a} is finite;

• f range over a finite signature Σ;
• [a]t denotes the abstraction of the atom a over the term t; it represents
“x.e” or “x.ϕ” in expressions like “λx.e” or “∀x.ϕ”.

1

Nominal Syntax

The set of nominal terms T(Σ,A,V) are defined inductively by the following
grammar:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

where

• a range over an infinite countable set of atoms A (object-level);
• X range over an infinite countable set of variables V (meta-level);
• π · X are called suspensions. Id · X is represented by X;
• π range over finite permutations on A, i.e. bijections A → A with
dom(π) := {a ∈ A | π(a) 6= a} is finite;

• f range over a finite signature Σ;
• [a]t denotes the abstraction of the atom a over the term t; it represents
“x.e” or “x.ϕ” in expressions like “λx.e” or “∀x.ϕ”.

1

Nominal Syntax

The set of nominal terms T(Σ,A,V) are defined inductively by the following
grammar:

t ::= a | π · X | f(t1, . . . , tn) | [a]t

where

• a range over an infinite countable set of atoms A (object-level);
• X range over an infinite countable set of variables V (meta-level);
• π · X are called suspensions. Id · X is represented by X;
• π range over finite permutations on A, i.e. bijections A → A with
dom(π) := {a ∈ A | π(a) 6= a} is finite;

• f range over a finite signature Σ;
• [a]t denotes the abstraction of the atom a over the term t; it represents
“x.e” or “x.ϕ” in expressions like “λx.e” or “∀x.ϕ”.

1

What are fixed-point constraints?

• A fixed-point constraint is an expression of the form π ⋏ t. Intuitively, it
means that π ⋏ t iff π · t = t.

• Originally, nominal theory was defined using freshness constraints a#t,
which generalizes that a is not a free name in t [UPG04; Gab09; GM09].

• Fixed-points were inspired by the following equivalence [GP02; And13]

a#x ⇐⇒ Nc.(a c) · x = x,

where the quantifier new (N) quantifies over fresh names, that is, a is
fresh for x iff for any fresh atom c, the swapping (a c) fixes x.

2

What are fixed-point constraints?

• A fixed-point constraint is an expression of the form π ⋏ t. Intuitively, it
means that π ⋏ t iff π · t = t.

• Originally, nominal theory was defined using freshness constraints a#t,
which generalizes that a is not a free name in t [UPG04; Gab09; GM09].

• Fixed-points were inspired by the following equivalence [GP02; And13]

a#x ⇐⇒ Nc.(a c) · x = x,

where the quantifier new (N) quantifies over fresh names, that is, a is
fresh for x iff for any fresh atom c, the swapping (a c) fixes x.

2

Why work with fixed-point constraints?

• Nominal unification involves finding substitutions that make two nomi-
nal terms equal, originally defined using freshness constraints [UPG04].

• Nominal unification is unitary with freshness constraints but loses this
property with equational theories like commutativity C [Aya+17; Aya+19].

• For instance, (a b) · X =?
C X has as solution 〈{a#X,b#X},id〉. However,

there are infinite solutions to the problem:

[X 7→ a+ b], [X 7→ (a+ b) + (a+ b)], [X 7→ f(a+ b)], . . .

• This property is recovered with the introduction of fixed-points [AFN20]
• 〈{(a b)⋏ X},id〉 solves it and recover all the lost solutions.

3

Why work with fixed-point constraints?

• Nominal unification involves finding substitutions that make two nomi-
nal terms equal, originally defined using freshness constraints [UPG04].

• Nominal unification is unitary with freshness constraints but loses this
property with equational theories like commutativity C [Aya+17; Aya+19].

• For instance, (a b) · X =?
C X has as solution 〈{a#X,b#X},id〉. However,

there are infinite solutions to the problem:

[X 7→ a+ b], [X 7→ (a+ b) + (a+ b)], [X 7→ f(a+ b)], . . .

• This property is recovered with the introduction of fixed-points [AFN20]
• 〈{(a b)⋏ X},id〉 solves it and recover all the lost solutions.

3

Derivation rules for fixed-points

π(a) = a
(⋏a)

Υ ⊢ π ⋏ a
Υ ⊢ π ⋏ t1 · · · Υ ⊢ π ⋏ tn (⋏f)

Υ ⊢ π ⋏ f(t1, . . . , tn)

dom(ππ′−1
) ⊆ dom(perm(Υ|X))

(⋏var)
Υ ⊢ π ⋏ π′ · X

Υ, (c1 c2) ⋏ Var(t) ⊢ π ⋏ (a c1) · t
(⋏abs)

Υ ⊢ π ⋏ [a]t

Figure 1: Derivation rules for fixed-points; c1, c2 are fresh names.

• Fixed-point contexts (Υ) contain primitive constraints of the form π⋏ X.

4

A simple but important example

With the context Υ = {(a1 a2)⋏ X1, (a3 a4)⋏ X1} we can derive

{a1,a3} ⊆ {a1,a2,a3,a4}
dom((a1 a3)) ⊆ dom(perm(Υ|X1)) (⋏var)

{(a1 a2)⋏ X1, (a3 a4)⋏ X1} ` (a1 a3)⋏ X1

5

Nominal theory

• An equality constraint is a pair t = u where t and u are nominal terms.
• An axiom is an equality judgement Υ ` t = u.
• A (nominal) theory T = (Σ,Ax) consists of a signature Σ and a (possi-
bly) infinite set of axioms Ax.

For example,

• CORE⋏ represents a theory with no axioms T = (Σ, ∅).
• C = (Σ, { ` X+ Y = Y+ X}) represents a commutative theory.

6

Derivation rules for equality via fixed-point constraints

(refl)
Υ ⊢ t = t

Υ ⊢ t = u
(symm)

Υ ⊢ u = t
Υ ⊢ t = u Υ ⊢ u = v

(tran)
Υ ⊢ t = v

Υ ⊢ (π ·Υ′)σ
(axΥ′⊢t=u)

Υ ⊢ π · tσ = π · uσ
Υ ⊢ t = u

(cong[])
Υ ⊢ [a]t = [a]u

Υ ⊢ t = u
(congf)

Υ ⊢ f(. . . , t, . . .) = f(. . . , u, . . .)

Υ, π ⋏ X ⊢ t = u (dom(π) ⊆ dom(perm(Υ|X)))
(fr)

Υ ⊢ t = u

Υ, (c1 c2) ⋏ Var(t) ⊢ (a c1) ⋏ t Υ, (d1 d2) ⋏ Var(t) ⊢ (b d1) ⋏ t
(perm)

Υ ⊢ (a b) · t = t

Figure 2: Derivation rules for equality; c1, c2,d1,d2 are fresh names.

• (π ·Υ′)σ = {π′π ⋏ π · Xσ | π′ ⋏ X ∈ Υ′}, where σ is a substitution.

7

Semantics

Nominal sets

Suppose X = (|X |, ·) is a Perm(A)-set, i.e. a set equipped with a permuta-
tion action.

Definition
• The support of an element x ∈ |X |, denoted by supp(x), is the least
finite atom set that supports x, that is, for all permutations π,

(∀a ∈ supp(x). π(a) = a) =⇒ π · x = x. (1)

• Additionally, supp(x) is strong if it also satisfies the converse of (1).
• X is a nominal set iff all elements have a finite support. Similarly, X
is a strong nominal set iff all elements have a strong finite support.

8

Examples

Example
1. The set A with the action π ·a = π(a) for every a ∈ A and π ∈ Perm(A);
supp(a) = {a} for all a ∈ A.

2. The set Pfin(A) = {B ⊂ A | B is finite} is a nominal set when equipped
with the action π · B = {π · a | a ∈ B} for every B ∈ Pfin(A) and
π ∈ Perm(A); supp(B) = B for all B ∈ Pfin(A).

• Pfin(A) is NOT strong because for B = {a, b} and π = (a b) we have
π · B = B but π(a) ̸= a.

9

Examples

Example
1. The set A with the action π ·a = π(a) for every a ∈ A and π ∈ Perm(A);
supp(a) = {a} for all a ∈ A.

2. The set Pfin(A) = {B ⊂ A | B is finite} is a nominal set when equipped
with the action π · B = {π · a | a ∈ B} for every B ∈ Pfin(A) and
π ∈ Perm(A); supp(B) = B for all B ∈ Pfin(A).

• Pfin(A) is NOT strong because for B = {a, b} and π = (a b) we have
π · B = B but π(a) ̸= a.

9

Examples

Example
3. The set of all ground nominal terms T(Σ,A, ∅) with the usual permu-
tation action forms a strong nominal set; supp(g) = atm(g) for all
g ∈ T(Σ,A, ∅), where atm(g) is the set of all atoms that occur in g.

4. Quotienting T(Σ,A, ∅) by the relation g ∼ g′ iff `T g = g′, then the
set T(Σ,A, ∅)/∼ is a nominal set. We usually denote it just by F(T,Σ);
supp(g) = ∩

{supp(g′) | g′ ∈ g} for all g ∈ F(T,Σ).

For C, the nominal set F(C,Σ) is not strong.

10

Σ-algebras

Definition
Given a signature Σ, a (strong) Σ-algebra A consists of:

1. A domain (strong) nominal set A = (|A |, ·).
2. An equivariant map atomA : A → |A | to interpret atoms;
3. An equivariant map absA : A×|A | → |A | to interpret abstractions, such
that a /∈ supp(absA(a, x)) for any a ∈ A and x ∈ |A |.

4. An equivariant map fA : |A |n → |A | for each term-former f : n in Σ.

11

Interpreting nominal terms

Definition
• A valuation ς in A maps variables X ∈ V to elements ς(X) ∈ |A |.
• The interpretation of a nominal term t, denoted by JtKAς is defined in-
ductively by:

JaKAς = atomA(a) Jπ · XKAς = π · ς(X)

Jf(t1, . . . , tn)KAς = fA(Jt1KAς , . . . , JtnKAς) J[a]tKAς = absA(a, JtKAς).

12

Validity and models

Definition
Let A be a (strong) Σ-algebra and ς a valuation on A.

• JΥKAς is valid iff π · JXKAς = JXKAς for each π ⋏ X ∈ Υ.
• JΥ ` π ⋏ tKAς is valid iff JΥKAς (valid) implies π · JtKAς = JtKAς .
• JΥ ` s = tKAς is valid iff JΥKAς (valid) implies JsKAς = JtKAς .

Definition
Let T = (Σ,Ax) be a theory. A (strong) model of T is a (strong) Σ-algebra
A such that for every valuation ς in A we have that

JΥ ` t = uKAς is valid for every axiom Υ ` t = u ∈ Ax.

13

Soundness

Question: Is soundness true?
Suppose T = (Σ,Ax) is a theory, A is a Σ-algebra which is a model of T,
and ς is a valuation on A. Then:

1. If Υ ` π ⋏ t then JΥ ` π ⋏ tKAς is valid.
2. If Υ `T t = u then JΥ ` t = uKAς is valid.

No! The nominal set semantics for nominal theories via fixed-point con-
straints fails to be sound. The culprit is the rule

dom(ππ′−1
) ⊆ dom(perm(Υ|X))

(⋏var)
Υ ` π ⋏ π′ · X

We’re going to present a Σ-algebra A, a valuation ς and a derivation Υ `
π ⋏ π′ · X using (⋏var) such that JΥ ` π ⋏ π′ · XKAς is not valid.

14

Soundness

Question: Is soundness true?
Suppose T = (Σ,Ax) is a theory, A is a Σ-algebra which is a model of T,
and ς is a valuation on A. Then:

1. If Υ ` π ⋏ t then JΥ ` π ⋏ tKAς is valid.
2. If Υ `T t = u then JΥ ` t = uKAς is valid.

No! The nominal set semantics for nominal theories via fixed-point con-
straints fails to be sound. The culprit is the rule

dom(ππ′−1
) ⊆ dom(perm(Υ|X))

(⋏var)
Υ ` π ⋏ π′ · X

We’re going to present a Σ-algebra A, a valuation ς and a derivation Υ `
π ⋏ π′ · X using (⋏var) such that JΥ ` π ⋏ π′ · XKAς is not valid.

14

A counter-example to soundness

Consider the domain of A as the nominal set Pfin(A).

• Fix enumerations of V = {X1, X2, . . .} and A = {a1,a2, . . .}.
• Define the valuation ς(Xi) := {ai,ai+1}. Then ς(X1) = {a1,a2}, ς(X2) =

{a2,a3} and so on.

Consider the derivation {(a1 a2)⋏ X1, (a3 a4)⋏ X1} ` (a1 a3)⋏ X1 from before.
Then

• JΥKAς is valid because (a1 a2) · JX1KAς = JX1KAς and (a3 a4) · JX1KAς = JX1KAς .
• However, (a1 a3) · JX1KAς 6= JX1KAς because

(a1 a3) · JX1KAς = {a3,a2} 6= {a1,a2} = JX1KAς .
15

Soundness for strong models

By restricting the semantics to the class of strong nominal sets, we obtain a
weak version of soundness:

Theorem (Soundness for strong models)
Suppose T = (Σ,Ax) is a theory, A is a strong Σ-algebra which is a strong
model of T, and ς is a valuation on A. Then:

1. If Υ ` π ⋏ t then JΥ ` π ⋏ tKAς is valid.
2. If Υ `T t = u then JΥ ` t = uKAς is valid.

16

What about completeness?

Strong theories

• Completeness relies on the following result: for a theory T, the set
F(T,Σ) is strong nominal.

• Commutativity fails for this property, so we must restrict our theories
to strong theories.

Definition
• Given a term t, we write X <t Y if X occurs in t at position p and Y occurs
in t at position q with p <lex q.

• An axiom ` t = u is strong if the following hold:
1. t and u are first-order terms (i.e., they are built using just function symbols
and variables);

2. <t and <u are strict partial orders (we say that t,u are well-ordered);
3. the order of the variables that occur in t and in u is compatible: if X <t Y
then it is not the case that Y <u X.

Theorem
If T is a strong theory, then F(T,Σ) is a strong nominal set.

17

Strong theories

• Completeness relies on the following result: for a theory T, the set
F(T,Σ) is strong nominal.

• Commutativity fails for this property, so we must restrict our theories
to strong theories.

Definition
• Given a term t, we write X <t Y if X occurs in t at position p and Y occurs
in t at position q with p <lex q.

• An axiom ` t = u is strong if the following hold:
1. t and u are first-order terms (i.e., they are built using just function symbols
and variables);

2. <t and <u are strict partial orders (we say that t,u are well-ordered);
3. the order of the variables that occur in t and in u is compatible: if X <t Y
then it is not the case that Y <u X.

Theorem
If T is a strong theory, then F(T,Σ) is a strong nominal set.

17

Strong theories

• Completeness relies on the following result: for a theory T, the set
F(T,Σ) is strong nominal.

• Commutativity fails for this property, so we must restrict our theories
to strong theories.

Definition
• Given a term t, we write X <t Y if X occurs in t at position p and Y occurs
in t at position q with p <lex q.

• An axiom ` t = u is strong if the following hold:
1. t and u are first-order terms (i.e., they are built using just function symbols
and variables);

2. <t and <u are strict partial orders (we say that t,u are well-ordered);
3. the order of the variables that occur in t and in u is compatible: if X <t Y
then it is not the case that Y <u X.

Theorem
If T is a strong theory, then F(T,Σ) is a strong nominal set. 17

Examples: Strong and non-strong theories

Example (non-strong)
Condition 1 excludes axioms like ATOM = { ` a = b}. Condition 2
excludes axioms like distributivity D = { ` X ∗ (Y+ Z) = X ∗ Y+ X ∗ Z}.
Condition 3 excludes permutative theories like C = { ` f(X, Y) = f(Y, X)}.

Example (strong)
The following axioms (and their combinations) are strong:

• Associativity A = { ` f(f(X, Y), Z) = f(X,f(Y, Z))}.
• Homomorphism Hom = { ` h(X ∗ Y) = h(X) ∗ h(Y)}.
• Idempotency I = { ` g(X, X) = X}.
• Neutral element N = { ` X ∗ 0 = 0}.
• Left-/right-projection Lproj = { ` pl(X, Y) = X} and Rproj = { `
pr(X, Y) = Y}.

18

Recovering Soundness

Strong judgments

• Recall Pitts’ equivalence: a#x ⇐⇒ Nc.(a c) · x = x,
• Primitive constraints should’ve be of the form Nc.(a c) ⋏ X instead of
just π ⋏ X.

Definition
• A strong fixed-point context, denoted ΥA,C, consists of a finite set with
primitive constraints of the form Nc.(a c) ⋏ X, where a ∈ A, c ∈ C, and
A and C are disjoint sets of atoms.

• A strong fixed-point judgment is of the form Nc.(ΥA,c0 ` π ⋏ t) where
ΥA,c0 is a strong fixed-point context and c0 ⊆ c. Similarly, a strong α-
equality judgment takes the form Nc.(ΥA,c0 ` s

⋏
≈α t).

19

Strong judgments

• Recall Pitts’ equivalence: a#x ⇐⇒ Nc.(a c) · x = x,
• Primitive constraints should’ve be of the form Nc.(a c) ⋏ X instead of
just π ⋏ X.

Definition
• A strong fixed-point context, denoted ΥA,C, consists of a finite set with
primitive constraints of the form Nc.(a c) ⋏ X, where a ∈ A, c ∈ C, and
A and C are disjoint sets of atoms.

• A strong fixed-point judgment is of the form Nc.(ΥA,c0 ` π ⋏ t) where
ΥA,c0 is a strong fixed-point context and c0 ⊆ c. Similarly, a strong α-
equality judgment takes the form Nc.(ΥA,c0 ` s

⋏
≈α t).

19

Remember the fixed-point derivation rules?

π(a) = a
(⋏a)

Υ ⊢ π ⋏ a
Υ ⊢ π ⋏ t1 · · · Υ ⊢ π ⋏ tn (⋏f)

Υ ⊢ π ⋏ f(t1, . . . , tn)

dom(ππ′−1
) ⊆ dom(perm(Υ|X))

(⋏var)
Υ ⊢ π ⋏ π′ · X

Υ, (c1 c2) ⋏ Var(t) ⊢ π ⋏ (a c1) · t
(⋏abs)

Υ ⊢ π ⋏ [a]t

Figure 3: Derivation rules for fixed-points; c1, c2 are fresh names.

20

These are them now. Feel old yet?

π(a) = a
(⋏a)

Nc.ΥA,c0 ⊢ π ⋏ a
Nc.ΥA,c0 ⊢ π ⋏ t1 · · · Nc.ΥA,c0 ⊢ π ⋏ tn

(⋏f)
Nc.ΥA,c0 ⊢ π ⋏ f(t1, . . . , tn)

dom(ππ′−1
) \ c ⊆ dom(perm(ΥA,c0 |X)) (⋏var)
Nc.ΥA,c0 ⊢ π ⋏ π′ · X

Nc, c1.ΥA,c0 ⊢ π ⋏ (a c1) · t
(⋏abs)

Nc.ΥA,c0 ⊢ π ⋏ [a]t

Figure 4: Derivation rules for strong judgements. Here, c denotes a list of distinct
atoms c1, . . . , cn. In all the rules c0 ⊆ c.

21

New derivation rules for α-equality

(
⋏
≈α a)

Nc.ΥA,c0 ⊢ a
⋏
≈α a

dom(π′−1 ◦ π) \ c ⊆ dom(perm(ΥA,c0 |X))
(
⋏
≈α var)

Nc.ΥA,c0 ⊢ π · X
⋏
≈α π′ · X

Nc.ΥA,c0 ⊢ t1
⋏
≈α t′1 · · · Nc.ΥA,c0 ⊢ tn

⋏
≈α t′n

(
⋏
≈α f)

Nc.ΥA,c0 ⊢ f(t1, . . . , tn)
⋏
≈α f(t′1, . . . , t′n)

Nc.ΥA,c0 ⊢ t
⋏
≈α t′

(
⋏
≈α [a])

Nc.ΥA,c0 ⊢ [a]t
⋏
≈α [a]t′

Nc.ΥA,c0 ⊢ s
⋏
≈α (a b) · t Nc, c1.ΥA,c0 ⊢ (a c1) ⋏ t

(
⋏
≈α ab)

Nc.ΥA,c0 ⊢ [a]s
⋏
≈α [b]t

Figure 5: Derivation rules for strong judgements. Here, c denotes a list of distinct
atoms c1, . . . , cn. In all the rules c0 ⊆ c.

Theorem (Correctness)

Nc.ΥA,c0 ` π ⋏ t if and only if Nc.ΥA,c0 ` π · t ⋏
≈α t, where c0 ⊆ c.

22

New derivation rules for α-equality

(
⋏
≈α a)

Nc.ΥA,c0 ⊢ a
⋏
≈α a

dom(π′−1 ◦ π) \ c ⊆ dom(perm(ΥA,c0 |X))
(
⋏
≈α var)

Nc.ΥA,c0 ⊢ π · X
⋏
≈α π′ · X

Nc.ΥA,c0 ⊢ t1
⋏
≈α t′1 · · · Nc.ΥA,c0 ⊢ tn

⋏
≈α t′n

(
⋏
≈α f)

Nc.ΥA,c0 ⊢ f(t1, . . . , tn)
⋏
≈α f(t′1, . . . , t′n)

Nc.ΥA,c0 ⊢ t
⋏
≈α t′

(
⋏
≈α [a])

Nc.ΥA,c0 ⊢ [a]t
⋏
≈α [a]t′

Nc.ΥA,c0 ⊢ s
⋏
≈α (a b) · t Nc, c1.ΥA,c0 ⊢ (a c1) ⋏ t

(
⋏
≈α ab)

Nc.ΥA,c0 ⊢ [a]s
⋏
≈α [b]t

Figure 5: Derivation rules for strong judgements. Here, c denotes a list of distinct
atoms c1, . . . , cn. In all the rules c0 ⊆ c.

Theorem (Correctness)

Nc.ΥA,c0 ` π ⋏ t if and only if Nc.ΥA,c0 ` π · t ⋏
≈α t, where c0 ⊆ c.

22

Translation between freshness and fixed-point constraints

Translations:

[·]⋏ : a#X 7→ Nca.(a ca)⋏ X
[·]# : Nc.(a c)⋏ X 7→ a#X.

Theorem A
The following hold, for some c (possibly empty):

1. ∆ ` a#t ⇐⇒ Nc, c1.[∆]⋏ ` (a c1)⋏ t.

2. ∆ ` s ≈α t ⇐⇒ Nc.[∆]⋏ ` s ⋏
≈α t.

23

Translation between freshness and fixed-point constraints

Theorem B
The following hold, for c0 ⊆ c:

1. Nc, c1.ΥA,c0 ` (a c1)⋏ t ⇐⇒ [ΥA,c0]# ` a#t.

2. Nc.ΥA,c0 ` s
⋏
≈α t ⇐⇒ [ΥA,c0]#, c#Var(s, t) ` s ≈α t.

• A fragment of the calculus with strong fixed-point constraints is equiv-
alent to the calculus with freshness constraints.

• The judgement Nc1, c2.(a c1)⋏ X, (b c2)⋏ X ` (a b)⋏ X is derivable, and
it cannot be translate to a freshness judgement. It remains valid since
it is equivalent to a#X,b#X ` (a b) · X ≈ X.

Theorem C
Nominal sets are sound for strong fixed-point constraints and
judgements.

24

Translation between freshness and fixed-point constraints

Theorem B
The following hold, for c0 ⊆ c:

1. Nc, c1.ΥA,c0 ` (a c1)⋏ t ⇐⇒ [ΥA,c0]# ` a#t.

2. Nc.ΥA,c0 ` s
⋏
≈α t ⇐⇒ [ΥA,c0]#, c#Var(s, t) ` s ≈α t.

• A fragment of the calculus with strong fixed-point constraints is equiv-
alent to the calculus with freshness constraints.

• The judgement Nc1, c2.(a c1)⋏ X, (b c2)⋏ X ` (a b)⋏ X is derivable, and
it cannot be translate to a freshness judgement. It remains valid since
it is equivalent to a#X,b#X ` (a b) · X ≈ X.

Theorem C
Nominal sets are sound for strong fixed-point constraints and
judgements.

24

Translation between freshness and fixed-point constraints

Theorem B
The following hold, for c0 ⊆ c:

1. Nc, c1.ΥA,c0 ` (a c1)⋏ t ⇐⇒ [ΥA,c0]# ` a#t.

2. Nc.ΥA,c0 ` s
⋏
≈α t ⇐⇒ [ΥA,c0]#, c#Var(s, t) ` s ≈α t.

• A fragment of the calculus with strong fixed-point constraints is equiv-
alent to the calculus with freshness constraints.

• The judgement Nc1, c2.(a c1)⋏ X, (b c2)⋏ X ` (a b)⋏ X is derivable, and
it cannot be translate to a freshness judgement. It remains valid since
it is equivalent to a#X,b#X ` (a b) · X ≈ X.

Theorem C
Nominal sets are sound for strong fixed-point constraints and
judgements.

24

Another way of recovering soundness in nominal sets?

Going back to the calculus without N, we can recover soundness in nominal
sets by substituting rule (⋏var) with:

πρ−1 ∈ 〈perm(Υ|X)〉 (Gvar⋏)Υ ` π ⋏ ρ · X

However, we lose expressive power because we cannot obtain a fixed-point
judgment to mimic a#X,b#X ` (a b) · [a]X ≈ [a]X.

(c3 c1) ∈ ⟨(c1 c2), (c3 c4), (a e′), (b d′)⟩
Υ, (c1 c2) ⋏ X, (c3 c4) ⋏ X ⊢ (a c1) ⋏ (a c3) · X

Υ, (c1 c2) ⋏ X ⊢ (a c1) ⋏ [a]X

(b d1) ∈ ⟨(d1 d2), (c′3 c
′
4), (a e

′), (b d′)⟩
Υ, (d1 d2) ⋏ X, (c′3 c

′
4) ⋏ X ⊢ (b d1) ⋏ (a c′3) · X

Υ, (d1 d2) ⋏ X ⊢ (b d1) ⋏ [a]X
(perm)

{(a e′) ⋏ X, (b d′) ⋏ X} ⊢ (a b) · [a]X = [a]X

25

Conclusion and Future Work

Conclusion and Future Work

Summary:

• Novel semantic interpretation of general fixed-point constraints
• Unlike freshness constraints, fixed-point constraints are not denota-
tionally sound for nominal sets, only for strong nominal sets.

• To recover soundness, we changed our fixed-point context to contain
primitive constraints of the form Nc.(a c)⋏ X.

• As a step towards completeness, we proved for strong theory T, F(T,Σ)
is strong nominal.

Future Work:

• Investigate the completeness of fixed-point constraints.
• Extend the calculus with Nmodulo C.
• Apply the results to unification problems modulo C.

26

References i

References

[AFN20] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-
Sobrinho. “On Nominal Syntax and Permutation Fixed Points”. In:
Log. Methods Comput. Sci. 16.1 (2020). DOI: 10.23638/LMCS- 16(1:
19)2020. URL: https://doi.org/10.23638/LMCS-16(1:19)2020.

[And13] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer
Science. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2013.

27

https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.23638/LMCS-16(1:19)2020

References ii

[Aya+17] Mauricio Ayala-Rincón et al. “On Solving Nominal Fixpoint Equa-
tions”. In: Frontiers of Combining Systems - 11th International Sympo-
sium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017, Proceedings. Ed.
by Clare Dixon and Marcelo Finger. Vol. 10483. Lecture Notes in Computer
Science. Springer, 2017, pp. 209–226. DOI: 10.1007/978-3-319-66167-
4_12. URL: https://doi.org/10.1007/978-3-319-66167-
4%5C_12.

[Aya+19] Mauricio Ayala-Rincón et al. “A formalisation of nominal alpha-
equivalence with A, C, and AC function symbols”. In: Theoretical
Computer Science 781 (2019). Logical and Semantic Frameworks with Ap-
plications, pp. 3–23. ISSN: 0304-3975. DOI: https://doi.org/10.1016/
j.tcs.2019.02.020. URL: https://www.sciencedirect.com/
science/article/pii/S0304397519301264.

28

https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4%5C_12
https://doi.org/10.1007/978-3-319-66167-4%5C_12
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.020
https://www.sciencedirect.com/science/article/pii/S0304397519301264
https://www.sciencedirect.com/science/article/pii/S0304397519301264

References iii

[Gab09] Murdoch James Gabbay. “Nominal Algebra and the HSP Theorem”.
In: J. Log. Comput. 19.2 (2009), pp. 341–367. DOI: 10.1093/LOGCOM/EXN055.
URL: https://doi.org/10.1093/logcom/exn055.

[GM09] Murdoch James Gabbay and Aad Mathijssen. “Nominal (Universal)
Algebra: Equational Logic with Names and Binding”. In: J. Log. Com-
put. 19.6 (2009), pp. 1455–1508. DOI: 10.1093/logcom/exp033. URL:
https://doi.org/10.1093/logcom/exp033.

[GP02] Murdoch James Gabbay and Andrew M. Pitts. “A New Approach to
Abstract Syntax with Variable Binding”. In: Formal Aspects Comput.
13.3-5 (2002), pp. 341–363. DOI: 10.1007/s001650200016. URL: https:
//doi.org/10.1007/s001650200016.

29

https://doi.org/10.1093/LOGCOM/EXN055
https://doi.org/10.1093/logcom/exn055
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016

References iv

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch Gabbay. “Nominal
unification”. In: Theor. Comput. Sci. 323.1-3 (2004), pp. 473–497. DOI: 10.
1016/j.tcs.2004.06.016. URL: https://doi.org/10.1016/j.
tcs.2004.06.016.

30

https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1016/j.tcs.2004.06.016

	What are fixed-point constraints?
	Semantics
	What about completeness?
	Recovering Soundness
	Conclusion and Future Work
	References

