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What are fixed-point constraints?



Nominal Syntax

The set of nominal terms T(X, A, V) are defined inductively by the following
grammar:
to=aln-X|f(t,...,ty) | [a]t

where

- a range over an infinite countable set of atoms A (object-level);
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Nominal Syntax

The set of nominal terms T(X, A, V) are defined inductively by the following
grammar:

te=al|m-X|f(ty,...,ta) | [a]t

where

- a range over an infinite countable set of atoms A (object-level);

- X range over an infinite countable set of variables V (meta-level);

- 7 - X are called suspensions. Id - X is represented by X;

- 7 range over finite permutations on A, i.e. bijections A — A with
dom(w) :={a € A | n(a) # a} is finite;

- f range over a finite signature ¥;

- [a]t denotes the abstraction of the atom a over the term t; it represents
“x.e” or “x.¢" in expressions like “Ax.e"” or “Vx.¢".
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What are fixed-point constraints?

- A fixed-point constraint is an expression of the form 7 A t. Intuitively, it
means thatm A tiffr-t =t

- Originally, nominal theory was defined using freshness constraints a#t,
which generalizes that a is not a free name in t [UPG04; Gab09; GM09].

- Fixed-points were inspired by the following equivalence [GP02; And13]
a#x < Wc.(ac)-x=x,

where the quantifier new (M) quantifies over fresh names, that is, a is
fresh for x iff for any fresh atom ¢, the swapping (a c) fixes x.



Why work with fixed-point constraints?

- Nominal unification involves finding substitutions that make two nomi-
nal terms equal, originally defined using freshness constraints [UPGO4].

- Nominal unification is unitary with freshness constraints but loses this
property with equational theories like commutativity C [Aya+17; Aya+19].



Why work with fixed-point constraints?

- Nominal unification involves finding substitutions that make two nomi-
nal terms equal, originally defined using freshness constraints [UPGO4].

- Nominal unification is unitary with freshness constraints but loses this
property with equational theories like commutativity C [Aya+17; Aya+19].

- For instance, (a b) - X =¢ X has as solution ({a#X, b#X}, 1d). However,
there are infinite solutions to the problem:

[X — a+b],[X— (a+b) + (a+ b)), X~ F(@a+b)],...

- This property is recovered with the introduction of fixed-points [AFN20]
- ({(a b) A X},1d) solves it and recover all the lost solutions.



Derivation rules for fixed-points

m(a)=a ThEaAt - ThExr At

—_— Af

Traia P TFrafo oty D
7Y T A Var(t) F A -t

dom(x™ ) C dom(perm(T|x)) e J(G o) AaVar(t) Er A (aa) (Aabs)

TErAr X TEx A [at

Figure 1: Derivation rules for fixed-points; ¢, ¢; are fresh names.

- Fixed-point contexts (T) contain primitive constraints of the form 7 A X.



A simple but important example

With the context T = {(a1 a2) A X1, (as as) A X1} we can derive

{ar,a3} € {a1,02,03,04}

dom((a; as)) € dom(perm(T|yx,))
{(01 02) A Xq, (03 04) A X1} = (Gj (13) A X4

(Avar)



Nominal theory

- An equality constraint is a pair t = u where t and u are nominal terms.

- An axiom is an equality judgement T -t = u.

- A (nominal) theory T = (X, Ax) consists of a signature ¥ and a (possi-
bly) infinite set of axioms Ax.

For example,

- CORE, represents a theory with no axioms T = (X, 0).
- C=(X,{ EX+Y=Y+X}) represents a commutative theory.



Derivation rules for equality via fixed-point constraints

————— (refl) THt=u THt=u TFu=v
TrHt=t Frg=p (symm) TET=v (tran)
Tk (r - T)o THt=u
Afie —————————— (con
TEr-to=m-Uo (@xr-t-u) T F[a]t = [a]u (congf])
Tei=y (congf)

TEFC. 6. ) =f(..,u,..)

T, m AXFt=u (dom(w)C dom(perm(Tlx))) f
THt=u ()

T (G a)Avar@F(ac) At T, (didy) A var(t) - (bdi) At
Th(ab) - t=t

(perm)

Figure 2: Derivation rules for equality; ¢i, ¢z, di, d, are fresh names.

c(m- Mo ={x"" A7 -Xo | A Xe T}, where o is a substitution.



Semantics



Suppose 2" = (|.Z7],-) is a Perm(A)-set, i.e. a set equipped with a permuta-
tion action.

Definition
- The support of an element x € | 27|, denoted by supp(x), is the least
finite atom set that supports x, that is, for all permutations ,

(Va € supp(x).w(a) =a) = m-x=x. (1)

- Additionally, supp(x) is strong if it also satisfies the converse of (1).

- 42 isanominal set iff all elements have a finite support. Similarly, 2
is a strong nominal set iff all elements have a strong finite support.



Example

1. The set A with the action w-a = w(a) for every a € A and = € Perm(A);
supp(a) = {a} for all a € A.



Example

1. The set A with the action w-a = w(a) for every a € A and = € Perm(A);
supp(a) = {a} for all a € A.

2. The set Psin(A) = {B C A | Bis finite} isa nominal set when equipped
with the action 7 - B = {wm-a | a € B} for every B € Psin(A) and
7 € Perm(A); supp(B) = B for all B € Psin(A).

* Psin(A) is NOT strong because for B = {a,b} and = = (a b) we have
m-B = Bbutn(a) #a.



Example

3. The set of all ground nominal terms T(Z, A, #) with the usual permu-
tation action forms a strong nominal set; supp(g) = atm(g) for all
g € T(X, A, (), where atm(g) is the set of all atoms that occur in g.

4. Quotienting T(X, A, () by the relation g ~ g’ iff 7 g = ¢/, then the
set T(X,A,0)/~ is a nominal set. We usually denote it just by F(T, X);
supp(g) = ({supp(g’) | g’ € g} forall g € F(T,X).

For C, the nominal set F(C, X) is not strong.



Y -algebras

Definition
Given a signature ¥, a (strong) ~-algebra 2 consists of:

1.
2.
3.

A domain (strong) nominal set .« = (||, ).
An equivariant map atom®: A — |.¢7| to interpret atoms;

An equivariant map abs®: Ax|Z| — |</| to interpret abstractions, such
that a ¢ supp(abs®(a,x)) forany a € A and x € |#/|.

An equivariant map f2: |&|" — || for each term-former f : nin X.

1



Interpreting nominal terms

Definition
- Avaluation ¢ in 2 maps variables X € V to elements ¢(X) € ||
- The interpretation of a nominal term t, denoted by [t]? is defined in-
ductively by:

[a]* = atom®(a) [ X% =7 s(X)
[f(tr, -, ta)]® = P(I6]2, - - [ta]) [[a]]2 = abs™(a, [t]2).



Validity and models

Definition
Let 2 be a (strong) X-algebra and ¢ a valuation on 2.

- [V is valid iff - [X]* = [X]2 for each w A X € T.
< [T ]2 is valid iff [T]? (valid) implies & - [t]2 = [t]2.
- [T s=t]*isvalid iff [T]? (valid) implies [s]* = [t]*.

Definition

Let T = (X, Ax) be a theory. A (strong) model of T is a (strong) X-algebra
2A such that for every valuation ¢ in 21 we have that

[T+t =u]? is valid for every axiom T It = u € Ax.



Soundness

Suppose T = (X, Ax) is a theory, 2l is a X-algebra which is a model of T,
and ¢ is a valuation on 2(. Then:

If T+ 7 A tthen [T+ x A t]2 is valid.
If Tt t=uthen [T+ t=u]?is valid.

14



Soundness

Suppose T = (X, Ax) is a theory, 2l is a X-algebra which is a model of T,
and ¢ is a valuation on L. Then:

If T+ 7 A tthen [T+ x A t]2 is valid.
If Tt t=uthen [T+ t=u]?is valid.

No! The nominal set semantics for nominal theories via fixed-point con-
straints fails to be sound. The culprit is the rule

dom(7™"") C dom(perm(T|x))
TrEaAn X

(Avar)

We're going to present a X-algebra 2, a valuation ¢ and a derivation T +
7 A ' - X using (Avar) such that [T + 7 A 7 - X]2 is not valid.

14



A counter-example to soundness

Consider the domain of 2( as the nominal set Psin(A).

- Fix enumerations of V.= {X;,X,,...} and A = {aq,a,,...}.

- Define the valuation <(X;) := {a;,ai.1}. Then ¢(X1) = {a1,a,},5(X2) =
{a,,as} and so on.

Consider the derivation {(a; a;) A X1, (a3 as) A X1} F (aq a3) A X; from before.
Then

- [T]2 is valid because (a1 a;) - [Xi]* = [Xi]* and (a3 as) - Xq]2 = ]2
- However, (a1 a3) - [X:] # [X:]* because

(a1 as) - P12 = {as, a2} # {a, a2} = P42



Soundness for strong models

By restricting the semantics to the class of strong nominal sets, we obtain a
weak version of soundness:

Theorem (Soundness for strong models)

Suppose T = (X, Ax) is a theory, 2l is a strong X-algebra which is a strong
model of T, and < is a valuation on 2. Then:

1. If T A tthen [T Ha o t]2 is valid.
2. If Ty t=uthen [T+t =u]?is valid.



What about completeness?




Strong theories

- Completeness relies on the following result: for a theory T, the set
F(T,X) is strong nominal.

- Commutativity fails for this property, so we must restrict our theories
to strong theories.



Strong theories

- Completeness relies on the following result: for a theory T, the set
F(T,X) is strong nominal.

- Commutativity fails for this property, so we must restrict our theories
to strong theories.

Definition

- Given aterm t, we write X <¢ Y if X occurs in t at position p and Y occurs
in t at position g with p <4ex .
- Anaxiom k t= uis strong if the following hold:
1. tand u are first-order terms (i.e., they are built using just function symbols
and variables);
2. <t and <, are strict partial orders (we say that t, u are well-ordered);
3. the order of the variables that occur in t and in u is compatible: if X <; Y
then it is not the case that Y <, X.



Strong theories

- Completeness relies on the following result: for a theory T, the set
F(T,X) is strong nominal.

- Commutativity fails for this property, so we must restrict our theories
to strong theories.

Definition

- Given aterm t, we write X <¢ Y if X occurs in t at position p and Y occurs
in t at position g with p <4ex .
- Anaxiom k t= uis strong if the following hold:

1. tand u are first-order terms (i.e., they are built using just function symbols
and variables);

2. <t and <, are strict partial orders (we say that t, u are well-ordered);

3. the order of the variables that occur in t and in u is compatible: if X <; Y
then it is not the case that Y <, X.

Theorem
If T is a strong theory, then F(T,X) is a strong nominal set. e



Examples: Strong and non-strong theories

Example (non-strong)

Condition 1 excludes axioms like ATOM = { F a = b}. Condition 2
excludes axioms like distributivity D = { E X% (Y+2) =X* Y+ X« Z}.
Condition 3 excludes permutative theories like C = { F f(X,Y) = f(¥,X)}.

Example (strong)

The following axioms (and their combinations) are strong:

- Associativity A = { F f(f(X,Y),2) = f(X,f(Y,2))}.

- Homomorphism Hom = { F h(X*Y) = h(X) = h(Y)}.
- Idempotency I ={ F g(X,X) = X}.

- Neutral elementN={ F X% 0= 0}

- Left-/right-projection Lproj = { + pl(X,Y) = X} and Rproj ={ +
pr(X,Y) =Y}



Recovering Soundness




Strong judgments

- Recall Pitts’ equivalence: a#x <= Wc.(a c) - x = x,

- Primitive constraints should've be of the form Wc.(a ¢) A X instead of
just w A X.
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Strong judgments

- Recall Pitts’ equivalence: a#x <= Wc.(a c) - x = x,

- Primitive constraints should've be of the form Wc.(a ¢) A X instead of
just w A X.

Definition

- A strong fixed-point context, denoted Ta.c, consists of a finite set with
primitive constraints of the form Wc.(a ¢) A X, where a € A, c € C, and
A and C are disjoint sets of atoms.

» A strong fixed-point judgment is of the form UC.(Taz - 7 A t) where
Tas is a strong fixed-point context and ¢o € C. Similarly, a strong a-

equality judgment takes the form WC.(Taz F S éa t).

19



Remember the fixed-point derivation rules?

m(a) = a TEaAt - TEx At
~m@)=a Af
7—1 () L Var(t)
N T Var(t) -t
dom(z™ ) C dom(perm(T|x)) (van) S @) aVar(t) Fm A (aa) (xabs)
TEx AT X TFW}\[U]t

Figure 3: Derivation rules for fixed-points; ¢1, ¢; are fresh names.

20



These are them now. Feel old yet?

a)=a NeTpzbmAty - WCTae koAt
,W() (1a) g e AR T TR ()
MC.TA,% FrAa MC.TAyﬁ FarA f(tw,..../tn)
7—1 —
dom(7™ c C dom(perm(Tsc Ne,cr.Tpm-mA(ac)-t
(T )\eC dom(pern(Taglh) 0 MECTaghmh@c)t o

NCTygbmaa-X NCTyq b oA [a]t

Figure 4: Derivation rules for strong judgements. Here, ¢ denotes a list of distinct
atoms ¢, ..., Cn. Inall the rules ¢y C C.
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New derivation rules for a-equality

(%o a) dom(7'~" o)\ € C dom(perm(T4zlx))

(éa var)

= A
NeTaghFa=aa WEThz - X Ao X

MCTag bt Rath - UETag bty R t)

— A , ’ (%a f)
UCaz - F(tr, ... tn) R F(8,... 1))

MENag F t R t!

_ A (%a [a])
UC. Ty F [a]t =q [a]t’

NCTpeg ks Xo (ab)-t Ne,ci.TagH(ac) At
(~a ab)

T sz  [als R [b]t

Figure 5: Derivation rules for strong judgements. Here, ¢ denotes a list of distinct
atoms ¢i,...,cn. Inall the rules ¢y C C.
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New derivation rules for a-equality

(%o a) dom(7'~" o)\ € C dom(perm(T4zlx))

(éa var)

= A
NeTaghFa=aa WEThz - X Ao X

MCTag bt Rath - UETag bty R t)

— A , ’ (za f)
UCaz - F(tr, ... tn) R F(8,... 1))

MENag F t R t!

_ A (%a [a])
UC. Ty F [a]t =q [a]t’

NCTpeg ks Xo (ab)-t Ne,ci.TagH(ac) At
(~a ab)

T sz  [als R [b]t
Figure 5: Derivation rules for strong judgements. Here, ¢ denotes a list of distinct

atoms ¢i,...,cn. Inall the rules ¢y C C.

Theorem (Correctness)

NCTpgFmAtifandonly ifUT Tz -t é:a t, where ¢y C C.

22



Translation between freshness and fixed-point constraints

Translations:

[1a a#X —  Ucq.(ace) A X
[l#: Wc(ac)AX — a#X

Theorem A
The following hold, for some € (possibly empty):

1. AFa#t <= UC,c.[A]l F(aq) At
2. AFsagt <= UC[AlL FS &gt

23



Translation between freshness and fixed-point constraints

Theorem B
The following hold, for ¢, C ¢

1. WS, . Tag F(ac) At < [Tagle b a#t

2 WCTym b SRt <= [Tacly, cAVAr(s,f) syt

24



Translation between freshness and fixed-point constraints

Theorem B
The following hold, for ¢, C ¢

1. WS, . Tag F(ac) At < [Tagle b a#t

2 WCTym b SRt <= [Tacly, cAVAr(s,f) syt

- A fragment of the calculus with strong fixed-point constraints is equiv-
alent to the calculus with freshness constraints.

-+ The judgement Ny, ca.(a ¢1) A X, (b c2) A X+ (a b) A Xis derivable, and
it cannot be translate to a freshness judgement. It remains valid since
itis equivalent to a#X, b#XF (a b) - X =~ X.

24



Translation between freshness and fixed-point constraints

Theorem B
The following hold, for ¢, C ¢

1. WS, . Tag F(ac) At < [Tagle b a#t

2 WCTym b SRt <= [Tacly, cAVAr(s,f) syt

- A fragment of the calculus with strong fixed-point constraints is equiv-
alent to the calculus with freshness constraints.

-+ The judgement Ny, ca.(a ¢1) A X, (b c2) A X+ (a b) A Xis derivable, and
it cannot be translate to a freshness judgement. It remains valid since
itis equivalent to a#X, b#XF (a b) - X =~ X.

Theorem C

Nominal sets are sound for strong fixed-point constraints and
judgements.

24



Another way of recovering soundness in nominal sets?

Going back to the calculus without W, we can recover soundness in nominal
sets by substituting rule (A var) with:

™ € (perm(T|x))

TFaap X lovar)

However, we lose expressive power because we cannot obtain a fixed-point
judgment to mimic a#X, b#X = (a b) - [a]X = [a]X.

(63 a1) € {(c1 @), (c3 ¢a), (ae’), (bd")) (b di) € {(di da), (c; ci), (ae’), (bd"))
T,(cr ) A X () A X (ac) A (acs)-X T, (dhda) A X, (5 ¢) AXE (bdh) A (ach) X
T, (CW CZ) X E (G C‘\) N [O]X T, (dW dz) AXE (b dw) A [G]X (perm)

{(ae) A X,(bd") x X} - (ab) - [a]X = [a]X

25



Conclusion and Future Work




Conclusion and Future Work

Summary:

- Novel semantic interpretation of general fixed-point constraints

- Unlike freshness constraints, fixed-point constraints are not denota-
tionally sound for nominal sets, only for strong nominal sets.

- To recover soundness, we changed our fixed-point context to contain
primitive constraints of the form Wc.(a ¢) A X.

- As a step towards completeness, we proved for strong theory T, F(T, X)
is strong nominal.

Future Work:

- Investigate the completeness of fixed-point constraints.
- Extend the calculus with N modulo C.
- Apply the results to unification problems modulo C.

26
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